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Abstract

We present a complete and exact approach for planning a feasible path for an arbi-
trary (non-convex) polyhedral subassembly (robot), R, translating amongst arbitrary
(non-convex) polyhedral obstacles, ®. This is the FeasiblePath problem. Qur algorithm
can be used to determine whether a pair of non-convex subassemblies can be separated
by a sequence of fine-motion and, possibly, contact-constrained translations, even when
the amount of free space tends to be severly limited. The ShortestPath problem entails
finding the shortest feasible path, We present the 2D Window Corner (WC) algorithm,
which is a novel solution to both problems for the case of translational paths in two
dimensions (the robot or obstacles are not required to be simply connected), followed
by the $D Window Corner algorithm, for feasible paths.

The Polyhedral Cone Representation (PCR) is introduced to efficiently represent the
geometric constraints between the boundaries of R and ¥, and as a basis for fast collision
avoidance checks. We introduce the concept of Window Corners in the Polyhedral Cone
Representation (PCR) and this results in reducing the search space. The Polyhedral
Cone Obstacle Representation (PCOR) transforms the problem (in E? and E3), into
that of a point moving amongst a collection, O(m), of convex obstacles. The PCOR is
a constructive representation of the set of contact configurations between R and ®. In
comparison, the worst-case number of vertices in the B-rep. of the C-space obstacles is
O(m?) in 2D and O(m®) in 3D, and requires the same order of time to construct. In
addition, contact-constrained, feasible motions, which lie on surfaces without interior
points will not be accessible in a typical B-rep. of the C-space obstacles.

In two dimensions, a Window Graph with k nodes and O(k?) edges, is built, and
the shortest path found, in O(kmlog(m)) time where m is the product of the number
of vertices describing the robot and obstacles respectively, k = O(m) in the worst case
and 1 < k < (m +2). The nodes of the W-Graph correspond to a subset of the convex
vertices of the C-space representation. In three dimensions, the Window Corner (WC)
algorithm constructs a Window Edge (WE)-Tree and solves the Feasible Path problem,
in worst-case time O(m®). Our approach finds Window Edges, which correspond to a
subset of the convex edges of the C-space boundary, and traces a path through Window
Corners.

We have implemented and tested the WC algorithms and examples from robot-
independent assembly sequence planning are presented in this paper. The 3D 12% 4
algorithm searches a finite search space, made possible by the use of Window Corners,
and both the 2D and 3D versions are attractive for rapid implementation in robotic and
assembly sequence path planning domains.
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1 Introduction = oo =

We present an algorithm for solving the FeasiblePath problem for the case of a polyhedral
subassembly (robot), R, translating amongst polyhedral obstacles, &, in order to attain a =
pre-specified goal configuration. The robot and obstacles are described by their bounding B

faces. The algorithm is complete and exact, in that it can find fine-motion paths and feasible
translations, which may be entirely constrained by contacts. Our algorithm can be used, =
during robot-independent Assembly Sequence Planning [4], to determine the separability |

(or assemblability) of a pair of non-convex polyhedral subassemblies. In this case, the
“robot” and “obstacles” each correspond to a subassembly. The robot corresponds to the

moving subassembly. Krishnan and Sanderson (5] study the assembly path planning problem
and present algorithms to analytically determine all feasible straight-line directions for
automatic assembly, by reasoning about the geometric constraints between subassemblies.
Wilson and Rit [18] describe rules to reason about the feasibility of a disassembly, based on
the outcome of previous disassembly tests.

In an Assembly Seguence Planning (ASP) environment, the amount of free space tends
to be severely limited. While many path planners oriented towards mobile robot navigation
have simplified the problem by modelling the robot as a disc, the method described here
considers an arbitrary polyhedral, constrained workspace which will render the disc-model

il

inadequate. Algorithms which achieve fast performance by using approximate representa-
tions of the obstacles or the free space are no longer guaranteed to find a feasible path if one
exists. In our approach, the robot and obstacles are described as a collection of polygons
(represented by edges) or polyhedrons (represented by faces), in two and three dimensions,
respectively. Note that the description is not required to be the precise boundary repre-
sentation of the objects. We require that the algorithm be correct and complete, in that
it should be guaranteed to find a path if one exists, and that every path reported should
indeed be feasible.

We solve the FeasiblePath problem in a hierachical manner. We first determine whether
some incremental motion is possible, by analyzing all the contacts between the robot and
the obstacles. We then test for the existence of a straight-line path to separate a pair of
subassemblies. Finally, the algorithm searches for paths with multiple translations. Deter- =
mining the feasibility of incremental motion, requires analyzing all the contacts between R -
and &, and can be done rapidly. This test is indispensable, since it serves as a necessary
condition for the existence of a feasible path. We expect that searching for a straight-line =
translational path, can be accomplished by a fast algorithm, while searching for paths with -
multiple translations and for paths with translations and/or rotations, would require in-
creasing amounts of time. In fact, the computation times progressively increase by several
orders of magnitude, mainly due to the increased dimensionality of the problem. The com-
plexity of the feasible assembly path serves as a component of an evaluation function, which
is used to guide the assembly sequence planning process, in order to identify the most op-
timal (according to specified criteria) assembly sequence plan. Also, designing an assembly
which only requires simple (e.g. straight-line) translational motions for the parts, would
significantly reduce costs and increase throughput of an automated assembly system. Such
issues are of vital importance in the emerging area of concurrent engineering, where “Design
For Assembly” (DFA) and “Design For Manufacture” (DFM) are design approaches which
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seek to improve design quality and assembly throughput, while reducing manufacturing
costs.

Previous works on planar path planning have, in general, addressed variants of the
ShortestPath problem, which requires finding an optimal path, usually with an Euclidean
distance metric. The Configuration (C)-space formulation of the problem has been exten-
sively used in the literature (Lozano-Pérez et al (9], Lozano-Pérez [10]). In C-space, the
moving object is shrunk to a point while the obstacles are simultaneously enlarged, and
this conceptually simplifies the problem. Constructing the explicit B-rep. of the C-space
obstacles has both space and time complexity which is exponential in the d-o-f of R and
polynomial in the complexity of the workspace.

In two dimensions, a Window Graph with k nodes and O(k?) edges, is built in O(kmlog(m))
time where m is the product of the number of vertices describing the robot and obstacles
respectively. k = O(m) in the worst case and 1 < k < (m + 2). The WC —PCOR al-
gorithm utilizes the concept of a Polyhedral Cone Obstacle Representation (PCOR) which
transforms the problem, in O(m) time, into that of a point moving amongst a collection,
O(m), of convex parallelogram shaped obstacles. In comparison, the space complexity of
Configuration (C)-spaceis O(m?) (Latombe[7], Sharir{13]). The PCOR consists of an O(m)
edges, each of which may be broken up, in the worst-case, into an O(m) segments, by the
O(m) convex obstacles. Thus, in the worst-case, the B-Rep. of the C-space obstacles has
an O(m?) vertices. But, we have shown that the vertices of the O(m) convex obstacles
form the reduced search space for solving the FeasiblePath problem. Any new vertices in
the B-Rep. of the C-space obstacles will be non-convex vertices, and are not required to be
visited by the FeasiblePath search algorithm.

Let n be the number of vertices in the C-space representation of the problem. O(n?)
time algorithms are known (Welzl[14], Asano et al [1]) to solve the C-space representation
of the problem, these algorithms have certain assumptions such as non-intersecting edges
(or polygons) in the input. An output sensitive algorithm was presented by Ghosh et al (2]
while Liu et al [8] plan the motion of a circular disc. The previously fastest algorithm was an
O(n?log(n)) algorithm using a sweep-line technique (Sharir et al [12]). The WC — PCOR
algorithm is expected to improve on any C-space based method since, in the worst case,
n = O(m?), and these methods would spend an O(m?) time in first constructing a boundary
rep. of C-space. Further, any C-space based algorithm is applicable to the PCOR, since
the C-space boundary can be computed from the PCOR in O(m?) time. From a C-space
perspective, the W-Graph nodes correspond to a subset of the convez verticesin the C-space
representation. ’

In three dimensions, the ShortestPath problem requires exponential time (Sharir et
al(12]). Papadimitriou[11] presented an approximation algorithm for finding the shortest
path. Hwang and Ahuja [17] present an algorithm, based on a potential field rep. of the
obstacles, for finding paths which may include rotations. They solve the problem in 3D world
space by restricting a search of the orientation space to cluttered regions. We introduce
the Polyhedral Cone Obstacle Representation (PCOR) which transforms the problem into
that of a point moving amongst a collection, O(m), of convex obstacles. The PCOR is a
constructive represenatation of the set of contact configurations between the robot and the
obstacles. In comparison, the worst-case space complexity of the boundary rep. of C-space
is O(m3) in three dimensions (Latombe [5], Sharir [10]), and requires the same order of time
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_to construct. There are an O(m) faces in the PCOR. Each face is broken into sub-faces,

due to intersections with the O(m) convex obstacles in the PCOR. In the worst case, each
face may be divided into an O(m?) unconnected sub-faces. The boundary of C-space is
the union of a subset of these sub-faces, resulting in an O( m3) worst-case space complexity
for the boundary representation. In regions where motion is completely constrained by
contacts, the feasible translations may lie on surfaces with no interior points. Such surfaces
can be inaccessible in a typical C-space boundary representation. Our 3D Window Corner
algorithm solves the FeasiblePath problem in polynomial (O(m?®)) time by tracing a path
through Window Corners located on Window Edges. This renders solving FeasiblePath
problems, preferable over solving for the shortest path for many robotic applications. From

a C-space perspective, the Window Edges correspond to a subset of the convez edges on the

boundary of a C-space representation.
Further, the FeasiblePath problem is preferable in many robotic domains. The Feasi-

blePath problem differs from the ShortestPath problem, since it entails planning a feasible
path which may not necessarily be an optimal path. Although, the FeasiblePath problem can
be reduced to the ShortestPath problem, it’s distinguishing features provide the motivation
to develop efficient solutions. —

The FeasiblePath problem appears in many robotics-related domains. In many robotic
settings, it would be preferable to find some feasible path quickly and commence operations,
rather than spend large amounts of time in planning an optimal path. Planning a feasible
path is vital to generating motions for automatic assembly, telerobotic maintenance and
repair in manufacturing or in hazardous situations such as in nuclear-radiation zones, under-
water or in deep-space exploration. Building sensor-integrated autonomous robot systems
is a focus of current research in robotics. Such intelligent robots have to frequently plan
their movements and reach certain goal configurations, in order to accomplish various tasks.
Typically, the robot would have to self-navigate among a set of obstacles in it’s environment,
hence requiring solutions to FeasiblePath problems. An emerging area is that of concurrent
engineering. Here, automated product design and assembly sequencing give rise to a very
large number of tests to determine the assemblability (or separability) of two subassemblies
subject to geometric constraints (Baldwin et al [19], Homem de Mello and Sanderson [3,4]).
Each of these combinatorially large number of tests, is a FeasiblePath problem,

Krishnan and Sanderson [6], have introduced the Polyhedral Cone Representation, Poly-
hedral Cone Obstacle Representation and Window Corners for the two-dimensional version
of the FeasiblePath problem. They proposed the 2D Window Corner algorithm, which solved
the planar FeasiblePath and ShortestPath problems by tracing a path through Window Cor-
ners. The above features resulted in a lower time complexity than previous works which
first construct the C-space. In this paper, Window Edges are introduced and the PCR and
PCOR are defined for a three-dimensional environment. The resulting 3D Window Corner
algorithm gives a greater relative improvement in time complexity over algorithms which
construct the boundary of C-space in the three-dimensional case as compared to the planar
version. The notations used in this paper have been kept consistent with those in (6]. Geo-
metric translational constraints are converted into a Polyhedral Cone Representation of the
problem. The concept of Window Corners, along with a Window Corner Theorem,
is used to provide a finite and reduced solution space. Finally, the search ripples through
a single connected component of reachable space containing the initial placement of the
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robot.

In Section 2, we present the Window Corner 2D (WC() algorithm in two versions. Sub-
section 1 introduces the definitions and terminology which will be used in this paper for the
2D algorithm. Subsection 2 defines the Window Corners and the important Window
Corner Theorem. Subsection 3 describes the Polyhedral Cone Representation. In Sub-
section 4, the definition of a Polyhedral Cone Obstacle Representation (PCOR), transforms
the problem into that of a point moving amongst parallelogram shaped obstacles and forms
the basis for the PCOR version. We also compare the PCOR to the C-space representation.
In Subsection 5, the PCR and PCOR versions of the WC algorithm are presented, along
with an analysis of their time complexity. An assembly path planning problem and it’s
solution are presented in Subsection 6.

Section 3 describes the WC algorithm in three dimensions, which follows the same
logical development as the planar version. In Subsections 1 and 2, we introduce definitions,
the concept of Window Edges, and the Window Edge and Feasible Path Theorems,
followed by the definition of Window Corners. In Subsection 3, the Polyhedral Cone
Representation of geometric constraints is introduced. Subsection 4 provides the Polyhedral
Cone Obstacle Representation, which conceptually reduces the problem to that of a point
moving amongst a collection of convex, parallelopiped-shaped obstacles. In Subsection
5, we describe a test to determine the feasibility of incremental motion based on all the
contact constraints. Next, we test for the existence of any straight-line assembly path.
The 3D Window Corner algorithm for multiple-step paths, is then described, along with
a discussion of it’s time complexity. In Subsection 6, an assembly path planning example
is provided to illustrate the working of the 3D WC algorithm. In Subsection 7, we show
how the PCOR can be utilized to compute the minimum distance between the robot and
obstacle boundaries. This algorithm conducts a search over only a subset of the convez
edges, in terms of a C-space representation.

2  FeasiblePath and ShortestPath Problems
in Two Dimensions

2.1 Preliminaries

Definitions:
¢ Ty £ asetof vertices, {vF} Vi=1,...,v(r),
o 75 £ aset of edges, {eF}Vi=1,...,e(x),( without loss of clarity, we will sometimes

refer to 7 as the set of all points contained in these edges ), 7v C 7g,

® TR £ asetof specified polygonal regions, that the edges may enclose, (and referring
to a set of points contained in those regions),

r & {z:z2€ E* A (z€rg V z € mR)}, (the set of all points contained in the
palygonal regions, edges and vertices),

F 2 E*\r



Krishnan and Sanderson: May 3, 1992 6

In the remainder of this paper, a point ¢ is said to be straight-line reachable from another
point p, if the straight-line translation from p to g is collision-free.

Given two points p,q € E?, § denotes the position vector corresponding to the point g,
pq = ¢ — P, P§ denotes the (interchangeably, the set of points in) line segment between p
and ¢, and |[pq|| denotes the length of the line segment from p to g. We now introduce the
followmg deﬁmtlons Letpe F.

Deﬁmtlon 1 An a- ne:ghbofhood ofp is deﬁned as a set N (p) = {u e E? ||pul| < a}
where a is a small, positive, real number.

Definition 2 A B-nerighborr'hood of p is defined as a set Nz(p) = {u : u € =[P < 5}

where B is a small, positive, real number.
Definition 3 A point g € 1 is a Window Corner w.r.t. p, written as WC(q, p), iff:

1. q € rv and
2 there ezists a small 3 and a norrnal fi, to Pq, such that 7 - pv >0 Vuve Ns(g).

Definition 4 A half-line emanating from p is called a ray, r(p), w.r.t. p. The set of all
rays from p is denoted by p(p).

Definition 5 4 ray, r(p), is called a colliding ray, iff:

1. 7(p) € p(p), and -

2. r(p) intersects ezactly | bounding edges of * where [ > 1.
The sei of all colliding rays, w.r.t. p, is denoted by o'(p).

Let the discrete set of intersection points between r(p) and rg, in sequence from p, be
denoted by IZP(r(p),i) Vi=1,...,1 where r(p) € p'(p).

Definition 6 0;(p) is the i-th window ray w.r.t. p, iff:

1. 8i(p) € p'(p), and

2. WC(IP(8:i(p),1),p), i.e. the first point of intersection on the colliding ray is a Window
Corner w.r.t. p. '

Let® = {8i(p)} Vi=1,...,w

2.2 Windows and the Window Corner Theorem

For a given window ray 6;(p): let WC(IP(6;(p),j),p) Vi=1,...,r wherel<r < l. We
now define Windows which are a (possibly unbounded) set of contxguous collinear points

on a window ray, as follows:

Definition 7 Let g; = IP(8i(p),j) Y Ji=1,...,1, and let the k-th Window on 6,(p) be
denoted by W(6i(p), k).

am  E N W W LN
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L Ifr=1:
(a) Ifr =1, then W(8i(p),7) = {b: 5= (\)pd-,1 < A}.
(b) else, W(Bi(p),k) = {b:5=(1- NG + A\@31,0 < A< L, 1< k< (r 1)} and
W(bi(p), 1) = {b: 5= (\pg-, 1 < A}.
2. If r <1: The first (r - 1) windows are defined as in (1(b)) above. W(8i(p),r) = {b:
b=(1-X)g +Ag:31,0< A< 1}

Definition 8 A collision-free path, ¥, from some initial position S to some goal position G,
is defined as a sequence of n points P13z, ..., ¥n Such that YPipi AT =0,Vi=1,...,(n-1),

“and where 1, corresponds to S and ), corresponds to G.

Assume that we are given two points p,q € F, but pg is not collision-free i.e. pgN= # 0.
Also assume that the shortest collision-free path from p to ¢ is pwq, wherew € E?, ponr = §,
@gN r = {B. We now state the following theorem:

Theorem 1 (Window Corner Theorem) If the shortest collision-free path from p to q
changes direction at a single point w, then w is a Window Corner w.r.t. p.

Proof: The proof is presented in two parts.

1. w € Ty: By contradiction. Let ((a € (Np(w)) NPD) : (|law]] = a@)) and ((b e
(NMo(W)) NT7) : (Wb = a)). If (w € F), see Figure 1(a), then Ja : Na(w)n 7 =
hence abNx = §. If ((w € 7g) A(w & 7v)), see Figure 1(b) then Ja:abnr = 0. But
l[aBll < l|a]] + |fwbll. Hence, |[pal| + |[abll + [Ibqll < |7l + [l=g]]. Thus, if w & 7v, a
shorter path can be found and so w has to be an obstacle vertex.

2. Let w be an obstacle vertex. We now show, by contradiction, that there should exist
a normal i, to B, for some small, positive 3, such that

A-pp20 V vEN(w). (1)

A situation to the contrary is shown in Figure 1(c). In such a case, there exist some
two points a and b, as defined above, for some small, positive, real a, such that
a,b € No(w) and [|7a|| + ||ab]] + |iBq|l < ||[B5|| + [|lg|. Hence, a shorter path can be
found and so w should be such as to satisfy the condition (1) above.

The above (1) and (2) are necessary and sufficient conditions for w to be a Window
Corner w.r.t. p, i.e. WC(w, p), from Definition 3.
( In fact, the following condition should also be satisfied; 7 - wg > 0.)
Q.E.D.C

Corollary 1 Given the shortest collision-free path, ¥, as in Definition 8, every intermedi-
ate point on this path is a Window Corner with respect to it’s predecessor on the path, i.e.
WC(Yis1, i)V i=1,...,(n = 2) and WC(¥i, ¥ip1) ¥V i=2,...,(n-1).

Proof: For ¥ to be the shortest collision-free path from ¥, to ,, it is necessary that it
represents the shortest collision-free path between any three successive points in ¥. In other
words, ¥ ¥;+1%i+2 is the shortest collision-free path between ¥; and 42, Vi = 1,...,(n-2).
From the Window Corner Theorem, it follows that WC(%i41, %) Vi =1,...,(n = 2)
and WC(%;, ¥is1)Vi=2,...,(n - 1).

Q.E.D. O
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Figure 1: Proof of the Window Corner Theorem

2.3 Polyhedral Cone Representation (PCR)

Fof the rest of the paper, we consider a robot, R, and obstacles, ®, to be described by:

e RV £ the set of robot vertices, {(vR}vi=1,...,v(R),

‘o RE £ the set of robot édges;,{ef‘} Yi=1,...,e(R), (we will also refer to RE as
the set of points contained in these edges), RV C RE, .

o RR £ asetof specified polygonal regions (or the points contained in them) that the
robot edges may enclose,

e RE {(z:z€E* A (z€ RE vV z€ RR)},
e &V 2 the set of obstacle vertices, {v?} Vi= 1,...,v(®),

o BE 2 the set of obstacle edges, {e?} V i = 1,...,e(®), ( without loss of clarity,
we will sometimes refer to ®E as the set of all points contained in these edges ),

®V C ®F,

o ®R 2 asetof specified polygonal regions (or the points contained in them) that the
obstacle edges may enclose,

e® 2 {(z:26E* A (z€8E Vv z€ dR)},

o« F 2 E?\&.

Note that the robot and obstacles are rt;asica.lly a collection of (pbissib;lry unconnected)
edges in a planar environment. In addition, § and G refer to the start and goal positions of

B u i U —
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Figure 2: A Vertez-Edge constraint cone

some fixed reference point on the robot, respectively. Also, we define the space complexity
of the problem by the following terms:

m = v(R)v(®), é(R)e(@) = O(m), v(R)e(®)=0(m), e(R)v(®)=0(m). (2)

The constraint on the translation of a vertex with respect to an edge can be represented
as a Vertez-Edge (VE) constraint cone, defined as follows.

Definition 8 A Vertez-Edge constraint cone, Cve(vi,e;), between a verter, v;, and an
edge, e;, consists of two bounding vectors, si and s3, drawn from the vertez to the end
points of the edge, and a base e;, which is the line segment joining the ends of the two
bounding vectors. A VE cone, consisting of an apez, a base and two bounding vectors, is
shown in Figure 2.

A VE cone can be unambiguously represented by three unit vectors nj, , n5,, n, (which
are the normals to the two bounding vectors and the base of the VE cone respectively) and
one of the bounding vectors, say, $;. These four vectors are collectively called the normal
representation of the VE cone.

Definition 10 The normal representation of the negation of a VE cone, denoted by
—-CvEg(vi,e;), is obtained by reversing the direction of each of the vectors in the normal
representation of the VE cone.

We are now ready to define the Polyhedral Cone Representation, PCR, as follows. In the
two-dimensional context, the constraint cones are actually polygonal, but will be extended
to polyhedral cones in three-dimensions. Given a robot, R, at some position and orientation
in E2, and a set of obstacles, &:

Definition 11 The set of all VE cones between the robot and obstacles, is called the Poly-
hedral Cone Representation, PCR(R, ®), or simply PCR, i.e.

PCR = {CVE(v, R J)V i,7}u {- Cvg(vk, )V k,l}. (3)
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Figure 3: (a) Robot, R, and obstacles. (b) The PCR
The origin of the PCR is denoted by Opcr. An example of a PCR is shown graphically [
in Figure 3. B
Déﬁnitioﬁi? A vector 7 € R? is said to be infeasible w.r.t. some VE cone, C;, written ;
INFEAS(%,C;), iff:
1. 7-n3 20, %
2. ¥-n;, 20 and

3. np-(F-) <0 - - L
If semi-free paths are allowed, conditions 1 and 2 are strict inequalities. o
Definition 13 Vector ¥ is infeasible w.r.t. ther 7’PC'R, ie =
INFEAS(3,PCR) « if 3C; : (C; € PCR)A(INFEAS(%,Cj)). 4) =
, =

A vector that is not infeasible w.r.t the PCR, is said to be feasible w.r.t. the PCR,
FEAS(3,PCR). : =
' : .

Theorem 2 A translation of the robot by some vector ¥, from it’s current position is guar-
anteed to be collision-free iff FEAS(7, PCR). —
Proof: We know from Definitions 12 and 13 that if FEAS(7, PCR), then ¥ does not -
pierce the base of any constraint cone. From Definition 9, this implies that no robot
(obstacle) vertex collides with an obstacle (robot) edge. These are necessary and sufficient =
conditions for any translation among planar polygonal objects to be collision-free, and hence
the proof. ' _
Q.E.D.C =
[

A vector is infeasible w.r.t. the PCR iff it pierces the base of any VE cone. Hence,
for the motion of Opcr, We can consider the bases of the VE cones to be obstacle edges.
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We know from Definition 3 that every Window Corner is the end point of some obstacle
edge. Therefore, the Window Corners with respect to Opcr, are the vertices of the VE
cone bases. An inspection of the VE cone from Definition 9 shows that these base vertices
correspond to a contact between some robot vertex and an obstacle vertex. Since, any of
these base-vertices, and only these base-vertices, can be Window Corners w.r.t. Opcr,
these vertices form the set of candidate Window Corners, i.e.

CWC = {(v; ,v°)V i,j} or (5)
WC(c, Opcr) = (3R, v?) € CWC : &= (w7 - o)) (6)

Each element of CWC corresponds to a labelling of a base-vertex of some VE cone. But, in
the CWC, the vertices are labelled as representing the contact between some robot vertex
and some obstacle vertex. Thus, the search space to find the Window Corners w.r.t. Opcr,
is of size m, even though there are physically, at least 2m base-vertices in the PCR.

2.4 Polyhedral Cone Obstacle Representation (PCOR)

Given one edge each on the robot, i € RE, and obstacle, j € ®E, with vertices v,,v; and
v3, vq Tespectively. It can be observed that the base-edges of each of the four VE cones
between ¢ and j, enclose a parallelogram-shaped region, which is entirely unreachable by a
collision-free translation from Opcr.

Definition 14 A Polyhedral Cone Obstacle between two edges, i and j, denoted by PCO(1, ),
is the parallelogram defined by the four vertices whose position vectors are as follows:

(%3 — %), (V3 — 12), (V3 — 1), (¥ — %3). We will sometimes refer to a PCO as the set

of all points contained in the parallelogram.

Definition 15 The set of all PCOs computed between robot and obstacle edges, at S, is
called the Polyhedral Cone Obstacle Representation (PCOR) of the problem;

PCOR = {PCO(:,/)}Vi=1,...,e(R) Vi=1,...,¢®) (7
We also refer to PCOR as the set of all points contained in the constituent PCOs.

It follows from the above that:
if IPCO(i,7): v e PCO(,j) = INFEAS(%,PCR) (8)

Since any point that is unreachable from Opcx lies in the shadow of some PCO, all
infeasible positions (corresponding to boundary intersections) of the robot are contained in
the PCOR. An example of the PCOR is drawn in Figure 4. Let the origin of the PCOR
be Opcor; it corresponds to the start position of the robot. In the PCOR, the various
PCOs form the obstacles for the motion of a point, henceforth called the point-robot r,
from Opcr to a point whose position vector is G-§.

Theorem 3 Finding a shortest collision-free multistep translation path, ¥, for the point-
robot from position Opcgr to position G - S, in the PCOR, such that ﬂ;ﬂ,.ﬂ N PCOR =

9,Vi=1,...,(n—1), is also a solution to the original problem.
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o
/ Opcor
R
(2) - (b)

Figure 4: (a) Robot, R, and obstacles. (b) The PCOR

Proof: It is Véra.sii:y verified that the boundary edges of PCO(3, j) are the bases of the
four VE cones between robot edge i and obstacle edge j. In addition, each PCO is a
parallelogram-shaped obstacle and is convex. Avoiding each PCO is equivalent to avoiding

a collison between all pairs ¢ of robot and obstacle edges, since all vertex-edge collisions are
avoided, from (8). This is because all infeasible points are contained within the PCOR.
Alternatively, the PCOs correspond to positions of the point-robot at which RENSE # 0.
The goal position for the point-robot is simply found to be G - §. U, therefore provides
the relative coordinates for the locus of any point on the robot R, and hence the solution
to the original problem.

Q.E.D.C

241 A Comparison of ‘PCO’R and C-space

Hence, in the PCOR, the problem is to find a collision- free path for a point-robot moving
from the start position,Opcor, to a goal position, G -5, among a set, O(m), of parallelo-
gram shaped, convex obstacles (PCOs). It is interesting, at this juncture, to compare the
PCOR with the C-space representation. The PCOR is a convex (parallelopiped shaped)
constructive representation (superset) of the C-space obstacle boundaries. Collectively, the
PCOR correspond to robot positions which result in an intersection between the robot and
obstacle boundaries. In the worst case, constructing the C-space boundary representation
requires time O(m?) and the boundary of C-space can have an O(m?) number of vertices
and edges (Latombe[7], Sharir{13]). Although any single connected component of C-space
was proven to have an O(m) number of vertices, no technique is known to generate them
in O(m) time (Sharir[13]). The PCOR consists of an O(m) edges, each of which may be
broken up, in the worst-case, into an O(m) segments, by the O(m) convex obstacles. Thus,
in the worst-case, the B-Rep. of the C-space obstacles has an O(m?) vertices. But, we have
shown that the vertices of the O(m) convex obstacles form the reduced search space for
solving the FeasiblePath problem. Any new vertices in the B-Rep. of the C-space obstacles
will be non-convex vertices, and are not required to be visited by the FeasiblePath search
algorithm. A worst-case example is shown in Figure 5, where the number of C-space vertices

mn mg o w o«
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is O(m?) and the number of PCOR vertices is O(m).

While an algorithm might spend an O(m?) time in generating a boundary rep. of C-
space and then solve the problem of moving a point-robot among C-space obstacles having
complexity O(m?), the WC algorithm (presented below) constructs the PCOR in O(m) time
and solves the problem of moving a point-robot among PCO obstacles having a complexity of
O(m) only. Clearly, the WC algorithm is working with a less-complex obstacle description,
and this is possible because it is found that the precise boundary description of the C-space
is not required for the solution of the ShortestPath or FeasiblePath problems in E2.

2.5 Window Corner (WC) Algorithm: Two Dimensions

The problem description consists of a robot and a set of obstacles, all of which are arbi-
trary (non-convex) polygonal objects and are specified as a collection of edges in a planar
environment. It is to be determined if there exists some feasible collision-free multistep
translation path such that the robot can move from an initial position S to some given goal
position G, and, if so, to find the shortest feasible path. It is assumed that the start and
goal positions are in free space.

We first open the node corresponding to the initial position of the robot and search for
new reachable Window Corners from the current position of R. Every candidate Window
Corner from CWC is tested against the conditions for a Window Corner from Definition 3
and then it is determined if the Window Corneris reachable with a collision-free translation,
by the PCR or PCOR method. These reachable Window Corners are then successively
opened until there are no new reachable Window Corners. As each reachable Window
Corner is opened, we also check whether the goal position is reachable from the present
position. Alongside, a Window (W) -Graph is built whose nodes are the reachable Window
Corners U{S, G}, and whose edges represent the distances between the nodes which each
edge connects. Actually, only a subset of the convez vertices of the C-space representation
is visited. A breadth-first search strategy is used to cover the finite search space.

2.5.1 WC - PCR Algorithm

In this version, we find the set of reachable Window Corners, from among CWC by testing
the feasiblity of each of the corresponding vectors w.r.t. the PCR(R, ®). 7(7) denotes the
point with position vector 7. |

The algorithm proceeds as follows:

1. Initialize CWC;
. Assign CWC — CWCUG; Initialize OPEN « §;
. for each node, n € OPEN

2
3
4. { /*n is the current position of R */
5 Compute PCR; |
6

* for each unreached element, ¢ = (v}, v®) € CWC
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7 {
8. Let ¢ = v;‘} - v?z;
9. if ( FEAS(¢,PCR) and WC(r(¢),0pcr) and edge (n,c) ¢ W-Graph)
10. then (OPEN — OPEN U (7 + ¢); add edge (n,c) to W-Graph)
11. }

12. OPEN — OPEN \ n;
13. }

2.5.2 WC - PCOR Algorithm

In this version, the set of reachable Window Corners w.r.t. the current position are found
by using a sweep-line algorithm over the obstacle edge set contained in the PCOR. The
search starts from Opcor and keeps opening newly reached nodes and adding new edges
to the W-Graph. The algorithm proceeds as follows:

1. Compute PCOR;

2. Initialize OPEN — Opcor;

3. for each node, n € OPEN

4. { /* nis the current position of the point-robot r */
5. Compute all new positions p : WC(p, n);

6 Let OPEN — OPEN U p;

Add edge (n,p) to W-Graph.

8. OPEN — OPEN\ n;

9. }

™

2.5.3 Discussion

The nodes in the W-Graph correspond to the reachable Window Corners. Let the number
of nodes in the final W-Graph = k; 1 < k € (m + 2). Hence, the W-Graph can consist of
O(k?) edges.

Theorem 4 The WC - PCR algorithm constructs the W-Graph in time O(km?) < O(m?).

Proof: At each reachable position, an O(m) vectors of the CWC are tested for feasibility
with respect to the PCR. Since the PCR consists of an O(m) constraint cones, the total
test at éach node takes O(m?) time. Since k nodes are opened, the entire algorithm takes
O(km?) time to construct the W-Graph, where, in the worst case, k = O(m).
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Q.E.D. O
The Feasible Path problem is solved if G is reachable from some Window Cornerreachable
from S. The W-Graph can be searched for the shortest path between § and G, giving the
solution to the ShortestPath problem. e

Theorem 5 The WC — PCOR algorithm constructs the W-Graph in time
O(kmlog(m)) < O(m?log(m)).

Proof: At each node, the sweep-line algorithm takes O(m log(m))rtime to identify the
new reachable Window Corners. This is because, the obstacle set in the PCOR consists of
an O(m) edges. Since k nodes are opened, the WC — PCOR algorithm takes O(km log(m))

time.

Q.E.D. O

Theorem 8 Using the WC — PCOR algorithm, the FeasiblePath and ShortestPath prob-
lems can be solved in O(km log(m)) < O(m? log(m)) time.

Proof: Once the W-Graph is built, it can be searched for the shortest path from § to
G. Using Dijkstra’s algorithm, the shortest path among k nodes in the W-Graph can be
found in O(k?) time. As a result of Theorem 5, the proof follows.

Q.E.D. O

The nodes in the W-Graph are a subset (Window Corners) of the convez vertices of
the C-space representation of the problem. Let n be the number of vertices in the C-space
representation of the problem. O(n?) time algorithms are known (Welzl{14], Asano et al
[1]) to solve the C-space representation of the problem, but these algorithms have certain
assumptions such as non-intersecting edges (or polygons) in the input. The previously
fastest algorithm was an O(n?log(n)) algorithm using a sweep-line technique (Sharir et al
[12]). The worst-case bound on the number of C-space vertices is n = 0(m?) (Latombe[7],
Sharir{13]). Since it does not construct C-space, the WC — PCOR algorithm is expected to
be faster than any method which first constructs the C-space. Further, any C-space based
algorithm is applicable to the PC OR, since the C-space can be computed from the PCOR

in O(m?) time.

2.6 Example

We tested the WC algorithm on an assembly planning problem. The objective was to
determine whether a feasible collision-free multistep translation path existed to separate
a non-convex polygonal part situated in a maze-type assembly, consisting of some tightly
constrained regions. The WC algorithm successfully solved the FeasiblePath problem, and
reported a feasible (and shortest) path consisting of 27 translations, in under 100ms. This

result is shown in figure 6.

3 The FeasiblePath grgblgm in Three Dimensions
3.1 Préliﬁiiﬁaﬁes - R 7 7

We introduce the following definitions:

Wi W e W W wmen Wm0 mor EEmC o wn
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Figure 6: A FeasiblePath problem and its solution using the Window Corner algorithm

o Ty £ aset of vertices, {vT}Vi=1,...,v(7),

¢ Tg £ asetof edges, {7} Y i = 1,...,¢(r), where the end points of each edge are
straight-line reachable from each other, ( without loss of clarity, we will sometimes
refer to 7 as the set of all points contained in these edges ), rv C 7,

o TF £ 2 set of faces, {fF}Vi=1,...,f(x), ( we will sometimes refer to 77 as the
set of all points contained in these faces ), xg C'*F,

* TR £ set of (or the points in the) specified polyhedral regions, that the faces may
enclose,

ox & {z:2€ E3 A (z€xp V z €7R)}, the set of all points contained in the

polyhedral regions, faces, edges and vertices,
o F £ E3\ r (the free space).

In this paper, a point ¢ is said to be straight-line reachable from another point p, if the
straight-line translation from p to ¢ is collision-free.

Given two points p,q € E3, § denotes the position vector corresponding to the point g,
Py = § — P, Pq denotes the (interchangeably, the set of points in) line segment between p
and ¢, and ||pq]| denotes the length of the line segment from p to g. We now introduce the
following definitions. Let p € F. ‘

Definition 18 An a-neighborhood of p is defined as a set Na(p) = {u:u € E3, ||| € a}
where a i3 a small, positive, real number. '
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Definition 17 A [-neighborhood of p is defined as a set N(p) = {u: u € =,||pu|| < 3}
where 3 is a small, positive, real number.

Definition 18 An ¢-neighborhood of an edge e, with vertices v; and v, is defined as a set
Ne(e)={u:uer wee||Wa| < ¢, Wh-vhy = 0} where ¢ is a small, positive, real number.

Definition 19 An edgee € 7 is a Window Edge w.r.t. p, written as WE(e, p), iff,

there ezists a small € and a normal, @, to the plane containing e and p, such that
fi-pp 20 Ve Nfe). WP(z,p) states that point z is located on an edge which is a
Window Edge w.r.t. p.

3.2 The Window Edge and Feasible Path Theorems

Definition 20 A collision-free path, ¥, from some initial position S to some goal position
G, is defined as a sequence of n points Y11, ..., ¥, such that Yy, N int(r) =@,V i =
.»(n = 1), and where 1 corresponds to § and v, corresponds to G.

Assume that we are given two points p, ¢ € F’, but 77 is not collision-free i.e. PgN = # 0.
Also assume that the shortest collision-free path from p to q is pwgq, wherew € E3, monr = @,
@GN ={. We now state the following theorem:

Theorem 7 (Window Edge Theorem) If the shortest collision-free path from p to q
changes direction at a single point w, then w lies on a Window Edge w.r.t. p.

Proof: The proof is presented in two parts.

l. w € rg: By contradiction. Let ((a € (NMy(w)) N PD) : (|la@]] = «)) and ((b 6
(NMa(@)) NTY) : (JwB]| = @)). If (w € F), see Figure 7(a), then Ja : My(w)N 1 =
hence abnNr = 9. If (w € 7p) A (w & 7)), see Figure 7(b) then Ja :abnr = 0. But
llaBll < [[a]| + [lwBll. Hence, |[pa]l + [fabl| + [IBqll < [[7]| + [[@gll. Thus, if w ¢ 7g,
shorter path can be found and so w has to lie on an obstacle edge.

2. Let w lie on an obstacle edge e. We now show, by contradiction, that there should
exist a normal i, to the plane containing e and p, for some small, positive ¢, such that

R-pp>0 Y veN(e) (9)

A situation to the contrary is shown in Figure 7(c). In such a case, there exist some
two points a and b, as defined above, for some small, positive, real a, such that
a,b € a(w) and ||7a]| + ||ab]| + ||bql| < ||7Z]| + ||@g]l. Hence, a shorter path can be
found and so w should be such as to satisfy the condition (1) above.

The above (1) and (2) are necessary and sufficient conditions for w to lie on a Window
Edge w.r.t. p,i.e. WP(w,p). from Definition 19.
( In fact, the following condition should also be satisfied; 7 - g > 0.)
Q.E.D.O

Corollary 2 Given the shortest collision-free path, ¥, as in Definition 20, every interme-
diate point on this path lies on a Window Edge with respect to it’s predecessor on the path,
Le. WP(Yip, %) Vi=1,...,(n-2) and WP(¢;, ¥i41)Vi=2,...,(n = 1).

TR TR 1]
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Figure 7: Proof of the Window Edge Theorem

Proof: For ¥ to be the shortest collision-free path from ¥; to ¥n, it is necessary that it
represents the shortest collision-free path between any three successive points in ¥. In other
words, ¥;i+1¥i+2 is the shortest collision-free path between %; and ¥;43,Vi=1,..., (n-2).
From the Window Edge Theorem, it follows that WP(yiy1, %) Vi=1,.. . (n-2)and
WP(i, ¥iq1)Vi=2,...,(n~ 1).

: Q.E.D.O

Although the successor point on a shortest path lies on a Window Edge w.r.t. its prede-
cessor, the problem of locating the actual points on the Window Edges requires exhaustive
calculations, since a continuous space needs to be searched. It is for this reason that the
problem of computing the shortest collision-free path in three- dimensions has been found
to be exponentially difficult (Sharir et al12], Papadimitrou [11]). Interestingly, for finding a
feasible path, it is sufficient to visit a Window Edge once. The precise point on the Window
Edge, that is visited, is not critical to finding a feasible path, if one exists. This is shown by
the following corollary and a theorem. Let there exist a shortest collision-free path ¥, as in
Definition 20, from some point p to G. Let the first intermediate point on this be ¥ € W;
where W; is a Window Edge w.r.t. p.

Corollary 3 Every point z € W;, which is straight-line reachable from p, lies on some
feasible path from p. '

Proof: For any point z € W;, an obvious feasible path from p to G exists. Such a path
first visits z and then visits the intermediate points of ¥, begining from %1, in sequence.
This is because ¢, is straight-line reachable from every point z € W,.

Q.E.D.O

Let some present position be p. Let the set of Window Edges w.r.t. p be W;. Let Y be
a set of points, defined as consisting of exactly one straight-line reachable (from p) point (if
one exists), from each Wi;. '

Theorem 8 (Feasible Path Theorem) There ezists a feasible path from p to G, if and
only if, there ezists a feasible path through at least one of the points in Y.
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Proof: The first part is obvious. For the second part, assume the contrary. Let there
exist a feasible path from p to G but that none of the points in Y lies on a feasible path.
Obviously, there exists a shortest path from p to G. The first intermediate point ¥ will
clearly lie on some Window Edge W;. From Corollary 2, there exists a feasible path through
every reachable point on W;. Since Y consists of one such point from W;, there exists a
feasible path from p to G through one of the points in J. We have arrived at a contradiction

and hence the proof.
Q.E.D. O

As a result of the Feasible Path Theorem, we can proceed with the search as follows.
Starting from the initial position, we keep visiting some point on 2 new Window Edge until
either the goal position is reached or there are no new Window Edges to visit. Proceeding
in this way, a Window Edge Tree can be built which represents the various sequences of
Window Edges that have been visited.

Theorem 9 To be able to detect a feasible path from p to G, each edge e] needs to be visited
in at most one point, resulting in a finite search space of size = e(r).

Proof: Let edge €7 be visited at point y. It is seen that there exists a feasible path
passing through some point z € ef,z # y, if and only if there exists a feasible path passing
through y. Hence, the existence of a feasible path is guaranteed to be detected, even if at
most one point y on every edge e7, is expanded. Since the maximum number of edges that

can be visited, is e(r), the proof follows.

Q.E.D.C
We now introduce Window Corners which identify reachable locations, on Window
Edges. The Window Corner algorithm will trace a path through Window Corners for
solving the FeasiblePath problem.

Definition 21 If a ray emanating from position p, intersects & such that the first n points
of intersection lie on Window Edges, W; w.r.t. p, then these intersection points are called
Window Corners corresponding to the Window Edge W; Vi=2,...,n.

3.3 Polyhedral Cone Representation (PCR)

For the rest of the paper, we consider the robot, R, and obstacles, ®, to be described
as follows: The robot has v(R), e(R) and f(R) vertices (vR), edges (ef!), and faces ( Jid)
respectively. R also denotes the set of all points contained in the robot. The obstacles have
v(®), e(®) and f(&) vertices (v{), edges (e¥), and faces (f¥) respectively. @ also denotes
all points contained in the obstacles. Note that the robot and obstacles are basically a
collection of faces in a polyhedral environment. We assume that each subassembly is equal
to the closure of its interior points and that each face is an orientable surface. In addition,
S and G refer to the start and goal positions of some point on the robot, respectively. Also,
we define the space complexity of certain terms as under, where m = v(R)v(®):

e(R)e(8) = O(m), f(R)f(®)=0(m), v(R)f(8)=0(m), f(R)v(&)=0(m). (10)

The constraint on the translation of a vertex with respect to a convex, planar face can
be represented as a Vertez-Face (VF) constraint cone, which can be defined as follows.

1Y Bi W Wi Ll 4 minr w L i |
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() (b)
Figure 8: (a) Vertez-Face and (b) Edge-Edge constraint cones

Definition 22 A Vertez-Face constraint cone Cy (v, f;), between a vertez, v;, and a face,
fi (with v(f;) vertices), consists of bounding vectors, st Vk=1,...,v(f;), drawn from the
vertez to the corners of the face, and a base, which is the face itself. A VF cone, consisting
of an apez, a base and the bounding vectors, is shown in Figure 8(a).

The constraint on the translation of an edge with respect to another edge can be repre-
sented as an Edge-Edge (EE) constraint cone, which can be defined as follows.

Definition 28 An Edge-Edge constraint cone, Crg(ei,e;), between an ordered pair of
edges, e; and e;, consists of four bounding vectors, 51, $2, §3 and sy, drawn from the ver-
tices of e; to the vertices of the e;, and the planar base formed by the end-points of bounding
vectors. An EE cone, consisting of an apez, a base and four bounding vectors, is shown in
Figure 8(b).

A VF cone or an EE cone can be unambiguously represented by unit vectors Nsy s NB
(which are the normals to the bounding faces and the base of the cone respectively) and
one of the bounding vectors, say, §;. These vectors are collectively called the normal
representation of the VF cone.

Definition 24 The normal representation of the negation of a VF (or EE) cone, denoted
by

—~Cvr(vi, f;) (or ~Cgg(ei, €5)), is obtained by reversing the direction of each of the vectors
in the normal representation of the VF (or EE) cone.

We are now ready to define the Polyhedral Cone Representation, PCR, as follows. Given
a robot, R, at some position and orientation in E3, and a set of obstacles, ®:




Krishnan and Sanderson: May 3, 1992 22

Definition 25 The set of all (fully three-dimensional i.e. non-degenerate) VF and EE cones
between the robot and obstacles, is called the Polyhedral Cone Representation, PCR(R, ®),
or simply PCR, i.e.

PCR = {Cvr(vP, IV 4,5} U {=Cvr(vg, W k13U {CEr(ef ef)¥ 2,9} (11)
The origin of the PCR is denoted by Opcr.

Definition 26 A vector 7 € R® is said to be infeasible w.r.t. some VF or EE cone, oF
(with b bounding vectors), written IN FEAS(%,C;), iff:

1. %-n;, 20, Vk=1,...,band
2. ng-(v-351)<0.

If semi-free paths are allowed, conditions 1 and 2 are strict Vi’ﬁequd'l’z"tie’s. In the case of
an unbounded cone, only condition 1 holds.

Definition 27 Vector 7 is infeasible w.r.t. the PCR, i.e.
INFEAS(%,PCR) « if 3C; : (C; € PCR) A(INFEAS(%,C})). (12)

A vector that is not infeasible w.r.t the PCR, is said to be feasible w.r.t. the PCR,
FEAS(¢,PCR). . o . :

Theorem 10 A translation of the robot by some vector ¥, from it’s current position is
guaranteed to be collision-free iff FEAS(7, PCR).

Proof: We know from Definitions 26 and 27 that if FEAS(v, PCR), then ¥ does not
pierce the base of any constraint cone. From Definitions 22 and 23, this implies that
no robot (obstacle) vertex collides with an obstacle (robot) face, and that there are no
collisions between robot and obstacle edges. These are necessary and sufficient conditions
for any translation among polyhedral objects to be collision-free, and hence the proof.

~ Q.E.D.C

Any non-convex face of the robot or obstacle is first decomposed into convex parts,
which are then used for the computation of the PCR, resulting in O(m) constraint cones.

A vector is infeasible w.r.t. the PCR iff it pierces the base of any VF or EE cone.
Hence, for the motion of Opcr, We can consider the bases of the VF and EF cones to be
obstacle faces. We know from Definition 19 that Window Edges correspond to the edges of
the obstacle faces. Therefore, the potential Window Edges with respect to Opcr, are the
edges of the VF and EE cone bases.

In fact, each such base edge is also the base edge of some EE cone. An inspection of the
EE cones from Definition 23 shows that these base edges correspond to a contact between
some robot (obstacle) vertex and an obstacle (robot) edge.

Now we are in a position to identify the Window Corners w.r.t. Opcr. We visit a
Window Edge at one of it’s vertices if the corresponding translation vector is feasible w.r.t.
the PCR. If both the vertices are unreachable, we compute the point on the Window Edge,
which lies in the direction of the line of intersection of the triangular facets supported by

mi min W /P VI T— m N = m
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the Window Edge and some other Window Edge. These facets are supported at Opcx and
are the bounding face of the EE cone corresponding to the Window Edges.

The points on the Window Edges which are visited, using the above technique, are the
previously defined Window Corners. The search space to find the Window Corners w.r.t.
Opcr, is O(m?), since there are an O(m) Window Edges.

3.4 Polyhedral Cone Obstacle Representation (PCOR)

Given two convex planar faces, f; and f, it is observed that the base-faces of all the VF
and EE cones between the two faces, enclose a convex polyhedron whose interior is entirely
unreachable by a collision-free translation from Opcr.

Definition 28 A PCO between a pair of conver faces is a convez polyhedron whose bound-
ing faces correspond to the base-faces of some VF or EE cone between the two faces. We
will sometimes refer to a PCO as the set of all points contained in the polyhedron.

Definition 29 The set of all PCOs computed between robot faces and obstacle faces , at
S, is called the Polyhedral Cone Obstacle Representation (PCOR) of the problem:

PCOR = {PCO(i,j)} Vi=1,...,f(R) Vi=1,...,f(®) (13)
We also refer to PCOR as the set of all points contained in the constituent PCOs.

Definition 30 A vector 7 € R3, is feasible w.r.t. a PCO iff: #Nint(PCO) = @. This can
be determined by testing the vector against each of the faces comprising the PCO. A vector
that is feasible w.r.t every PCO, is said to be feasible w.r.t. the PCOR; FEAS(7,PCOR).

It follows from the above that:
if IPCO(i,5):vE int(PCO(i,j)) = INFEAS(4,PCR) (14)

Let the origin of the PCOR be Opcor,; it corresponds to the start position of the robot.
In the PCOR, the various PCOs form the obstacles for the motion of a point, henceforth
called the point-robot r, from Opcr to a point whose position vector is G - §.

Theorem 11 Finding a feasible sgor shortest) collision-free path, ¥, for the point-robot from
position Opcn to position G - S, in the PCOR, such that F E'AS(:/),H w.,?COR)
O,Vi=1,...,(n—1), is also the solution to the original FeasiblePath (or ShortestPath)
problem.

Proof: It is easily verified that the boundary faces of the PCOs are the bases of the
VF and EE cones between robot and obstacle faces. Avoiding the interior of each PCO is
equivalent to avoiding a non-contact collison between all robot and obstacle faces, since all
edge-face collisions are avoided, from (14). The goal position for the point-robot is simply
found to be G - §. ¥, therefore provides the relative coordinates for the locus of some point
on the robot R, and hence the solution to the original problem.

Q.E.D. O
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3.4.1 PCOR and C-space

Hence, in the PCOR, the problem is to find a collision-free path for a point-robot moving
from the start position,Opcor, to a goal position, G-3S, among a set, O(m), of convex
polyhedral obstacles (PCOs). The PCOR is a convex constructive representation (superset)
of the C-space obstacle boundaries. Collectively, the PCOR corresponds to robot positions
which result in an intersection between the robot and obstacle boundaries. In the worst
case, constructing a boundary rep. of the C-space requires time O(m3), and the boundary
of C-space can have an O(m3) number of vertices and edges (Latombe([7], Sharir[13]). There
are an O(m) faces in the PCOR. Each face is broken into sub-faces, due to intersections
with the O(m) convex obstacles in the PCOR. In the worst case, each face may be divided
into an O(m?) unconnected sub-faces. The boundary of C-space is the union of a subset
of these sub-faces, resulting in an O(m3) worst-case space complexity for the boundary
representation. In regions where motion is completely constrained by contacts, the feasible
translations may lie on surfaces with no interior points. Such surfaces can be inaccessible
in a typical C-space boundary representation. Such contact surfaces are accessible in our
PCOR representation, since all face-face constraints are individually represented.
Therefore, while an algorithm might spend an O(m?) time in generating C-space and
then solve the feasibility problem of moving a point-robot among C-space obstacles having
complexity O(m?), we have shown that an algorithm could construct the PCOR in O(m)
time and solve the feasibility problem of moving a point-robot among PCO obstacles having
a complexity of O(m) only. The WC algorithm is working with a less-complex obstacle
description, and this is possible because it is found that the precise boundary description
of the C-space is not required for the solution of the ShortestPath or FeasiblePath problems
in E3. In addition, the Window Edges correspond to a subset of the convex edges of the

boundary representation of C-space.

3.5 Hierarchical Assernbly Path Planning

The problem environment consists of a moving-subassembly (robot) and a collection of
~ obstacle-subassemblies, all of which are assumed to be polyhedral, and are described by a

set of faces. We assume that each subassembly is equal to the closure of its interior points
and that each face is an orientable surface. The initial and goal positions for the robot
are also specified. In assembly sequence planning, a goal configuration corresponding to
a disassembly can be set up trivially. The Window Corner algorithm determines if there
exists some collision-free path for the robot to reach the goal configuration, and enumerates

such a path. We assume that the robot is not completely contained within any obstacle.

3.5.1 Feasibility of Incremental Translation

We now determine the feasibility of incremental translational motion, based on analyzing
all the (not only pla.na.r) contact constraints. We first compute the PCOR. If the Opcon
lies in the interior of at least one PCO, then the robot is intersecting the obstacles, and
therefore no feasible incremental motion is possible.

If Opcor lies on the boundary of PCO;, then this contact gives rise to an unbounded,
conver Local Constraint Cone, LC;, whose normal representation consists of the normal

(1) T
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Figure 9: Computing Local Constraint Cones

(in the direction of PCO;) to the PCO face on which Opcor lies. Note that the normal
representation of LC; has 3, 2 or 1, vectors depending on whether Opcor lies on a vertex,
edge, or the interior of a face of PCO; respectively.

The set of all LC; for all (say, k in number) the PCO;, in contact with Opcor is called
the Local Cone Representation or LCR.

Clearly, any incremental motion is possible if and only if, there exists some unbounded
vector (a ray) which is feasible w.r.t. every contacting PCO € PCOR. Using the preceding
discussion on Window Corners, it is seen that there exists such a feasible vector if and only
if one of the rays containing a Window Corner is feasible. Hence, the possible unbounded
vectors are the individual bounding vectors of the local constraint cones or the vectors
corresponding to the intersection of the boundary of a pair of local constraint cones. If the
number of contacts is small, then the feasibility of incremental motion can be determined
efficiently (in O(k®) time), before proceeding with the more computationally expensive
search for multiple-step paths.

Figure 9(a) shows an obstacle face and a robot edge. The PCO is given in Figure 9(b).
Since Opcor lies on a vertex of the PCO, the Local Constraint Cone is the intersection of
three half-spaces, Figure 9(c).

3.5.2 Testing for Straight-line Assembly Paths

In this subsection, we show how to determine the existence of a straight-line path to separate
a pair of non-convex polyhedral subassemblies. It is to be determined if there exists some
unbounded vector (ray) which is feasible w.r.t. the PCOR. The procedure followed is similar
to that in the previous section and requires obtaining rays, containing Window Corners,
which are feasible w.r.t. PCOR. Hence, determining the existence of a straight-line path
to separate a pair of subassemblies requires O(m3) time.
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3.5.3 Paths with Multiple-Translations

If some incremental translation is feasible, and a straight-line assembly path does not ex-
ist, the algorithm searches for a path with multiple translations. We first open the node
corresponding to the initial position of the robot and identify the Window Edges w.r.t. the

present position. A convex decomposition of non-convex faces is carried out, prior to the
construction of the PCOR. We then identify the Window Corners on these Window Edges,
using the technique described in Subsection 3.3. It is then determined if the Window Corner
is reachable with a collision-free translation, w.r.t. the PCOR. These reachable Window
Corners are then successively opened until there are no reachable Window Corners, which
are unreachable from any previously visited Window Corners on the same Window Edge
(or until the goal position is reached). As each reachable Window Corner is opened, we
also check whether the goal position is reachable from the present position. Alongside, a
Window Edge(WE) - Treeis built whose nodes are the reachable segments on Window Edges
U{S, G}, and whose edges denote the traversability between the Window Edges which are
connected. Thus, a breadth-first search ripples out, to cover the finite search space. From
a C-space perspective, the WC algorithm restricts the search process to only a subset of the
conver edges of the corresponding C-space representation.

3.5.4 3D WC Algorithm for Feasible Paths
1. Initialize OPEN ~ Opcor; GOAL = FALSE;
2.do { -
3. for each node, n € OPEN

4{ Ar/"'r,n is the current position of R on some Window Edge segment e; */

5. Construct the PCOR;

6.  if FEAS((G - § - 7), PCOR) then GOAL = TRUE;

7. Identify the Window Edges and Window Corners;

8. for each Window Corner ¢, on some Window Edge segment ez,
9. {

10. if (FEAS(¢- i, PCOR) and edge (e1,€;) ¢ WE-Tree))

11. then {(OPEN — OPEN Uc); add edge (e, ez) to WE-Tree;}
12. }

13, OPEN — OPEN\n;

14. }

15. } while (GOAL == FALSE);

W i W mEwm W s m
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3.5.5 Discussion

The nodes in the WE-Tree correspond to the reachable Window Corners on Window Fdges.
Let the number of nodes in the final WE-Tree = k; 1 < k € u : u = O(m?). Hence, the
WE - Tree can consist of O(m?) edges, since each reachable segment is only visited once. The
n arbitrary faces of a polyhedron with O(n) edges, can be decomposed into an O(n) convex
faces since each convex face could be bounded by at least one of the original polyhedron’s
edges. Hence, the number of constraint cones in the PCR, is O(m).

Theorem 12 The WC algorithm constructs the WE-Tree and solves the Feasible Path prob-
lem in time O(m?®).

Proof: At each reachable position, an O(m?) vectors of the Window Corners, are tested
for feasibility with respect to the PCR. Since the PCR consists of an O(m) PCOs, the total
test at each node takes O(m?3) time. Since, in the worst case, an O(m?) nodes are opened,
the entire algorithm takes O(m®) time to construct the WE-Tree and solve the FeasblePath
problem.

Q.E.D. O

Let n be the number of vertices in the typical C-space representation of the problem.
The WC algorithm is expected to be faster than any C-space based method since, in the
worst case, n = O(m®) (Latombe[7], Sharir{13]). This algorithm thus avoids the o(m?)
time required to build the boundary description of C-space. Further, any C-space based
algorithm is applicable to the PCOR, since the C-space boundary can be computed from
the PCOR.

3.6 Resultg.

The 3D Window Corner (WC) Algorithm, for planning translational paths, has been imple-
mented in the C language. The program has been tested on several path planning examples
on SUN SPARCstation 330 and IBM RISC 6000 machines. The input to the program
consists of the description of R and @ in terms of the bounding faces, edges and vertices.
The initial and final configurations of R are also given. The program starts by computing
the PCOR description of the problem. The initial position of R corresponds to the origin,
Opcor. This position also corresponds to the root node of the WE-Tree. From the present
position, all the polyhedral convex cones which form the PCR are generated, and all the
Window Edges are identified. These cones are used to determine the reachability of each
of the candidate Window Corners which are generated by the pair-wise intersection of the
Window Edges. The reachable Window Corners are then appended to a list OPEN, which
consists of all configurations of R that have to explored further. This process iterates re-
cursively, over each of the unexplored nodes in OPEN until either the goal configuration is
reachable from the present node or OPEN does not contain any new nodes. This is equiv-
alent to a breadth-first search and other techniques such as best-first or A* could be used
to significantly improve the performance. In that case, a heuristic evaluation function could
be defined which gives, in some sense, the proximity of a node to the goal configuration.
The WC algorithms is an example of the roadmap approach. The WE-Tree has to
be built only once for a given robot R, and obstacles, . Thereafter, for any start-goal
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pair, the FeasiblePath problem can be solved simply, by connecting each of the terminal
configurations to at least one of the Window Edges that are represented in the W¢-Tree.

We present the results of applying the 3D WC Algorithm to several assembly path
planning problems. The graphic outputs are snapshots of dynamic demos which have been
prepared. These demos are currently being displayed in a simple, portable MATLAB envi-
ronment with the aid of additional programs that have been written to enable the viewing
of 3D objects in motion, using a 2D MATLAB graphics display.

The performance of the program has been found to be satisfactory. However, problems
of accuracy and robustness due to finite-precision arithmetic [20] could arise while the
geometric (largely vector-based) operations are being carried out. A practical approach
would be to “grow” the PCOR obstacles by an extremely small amount (say, an order of
magnitude, or two, less than typical tolerance lmuts) before applying the algorithm. In
this case, the algorithm would (theoretically) no longer be guaranteed to find a path if
one exists, but any path that is reported will be guaranteed to be collision-free. This is
equivalent to restricting the motion of R, so that it maintains a minimum safety distance
from every obstacle. .

3.6.1 A Cube in a Box Assembly

The initial configuration of this assembly consists of a cube which is placed in a box, Figure
10. The box has an opening on it's top face. The 3D WC Algorithm was used to plan a
path which would move the cube to a goal configuration which has the cube outside and
under the box, such that the top face of the cube is in planar contact with the lower face of
the box. The feasible path found consisted of 5 motions. Of these, 3 were contact-motions

and 2 were free-motions.

1 3.62 A Peg in a Blmd-HoIe 'Assembly

A cyhndncal peg (sha.ft) is lmtlally inserted into a bhnd hole on the top face of a block.
The blind-hole runs about two thirds of the height of the block. The 3D WC Algorithm
was used to plan a path which removed the peg from the hole and placed it on the table
(which is assumed to be supporting the block). Figure 11 shows the 2 contact-motions and
1 free-motion which were involved.

3.6.3 A Knuckle Joint Assembly

A polyhedral version of a knuckle joint assembly was designed. Th_lS assembly has five
parts: the fork, eye, pin, collar and the taper-pin, all shown in Figure 12. The five parts
are initially arranged on a table (assumed). The assembly process assumes that the fork is
stationary while the rest are mobile. The 3D WC Algorithm was used to successively plan
paths for the four assembly motions which are required to form the completed assembly.
Figure 13 shows the assembly path computed for assembling the eye with the fork. Figure
14 shows the completed knuckle joint assembly. The remaining assembly motions which
were computed, have not been shown due to space limitations.
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A disassembly path computed by the Window Comer Algorithm
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Figure 10: Disassembly Path for a Cube in a Box Assembly, computed by the 3D WC
Algorithm: 3 contact-motions, 2 free-motions
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Assembly motions for a cylinder, using the Window Comer Algorithm
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Figure 11: Disassembly Path for a Peg in a Hole
Algorithm: 2 contact-motions, 1 free-motion

Assembly, computed by the 3D WC
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Parts of a KNUCKLE JOINT ASSEMBLY: FORK. EYE, PIN, COLLAR. TAPER-PIN
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Figure 12: Parts of a Knuckle Joint Assembly
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The EYE has been assembled with the FORK: free_motion(1), contact_motion(1)
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Figure 13: Assembly Path Planning for a Knuckle Joint Assembly, using the 3D WC Algo-

rithm
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Figure 14

: The completed Knuckle Joint Assembly
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3.7 Minimum Distance between Non-convex Polyhedra

We show how the description of the PCOR can be used to compute the minimum dis-
tance between the robot and obstacle boundaries. This problem frequently arises in robot
motion planning and collision avoidance problems. The methods proposed in the litera-
ture (Bobrow{15], Gilbert et al [16]) deal with convex polyhedra and utilize mathematical
programming techniques. These algorithms were applicable to the non-convex case by con-
sidering the convex decompositions of 3D polyhedra, resulting in O(m) time algorithms
(without including the preprocessing time required for the 3D convex decomposition).

We can compute the minimum distance between Opcor and a face of the PCOs in
constant time. Since there are an O(m) PCOs, the minimum distance between the robot
and obstacle boundaries can be computed in O(m) time. An intersection between the robot
and obstacle boundaries is equivalent to Opcor being located inside at least one of the
PCOs, and hence can be detected in O(m) time. '

Our algorithm is efficient for analytically computing the minimum distance between the
boundaries of non-convex polyhedra, since it can be computed in O(m) time and does not
require the expensive convex decomposition of 3D polyhedra.

4 Conclusions

We have presented the correct and complete WC algorithm which searches for, transla-
tional paths among polyhedral subasemblies, even when the amount of free space tends to
be severely limited. Polyhederal cones are used to represent geometrical translational con-
straints between the robot and obstacle boundaries and to support accurate and efficient
reachability tests. We introduced Window Corners and Window Edges in the Polyhedral
Cone Representation (PCR) and this resulted in reducing the search space. Only a single
connected component of the reachable space containing the initial placement of the moving
object is searched. In two dimensions, a Window Graph with k nodes and O(k?) edges, is
built, and the shortest path found, in O(kmlog(m)) time where m is the product of the
number of vertices describing the robot and obstacles respectively, k = O(m) in the worst
case and 1 < k < (m+2). In addition, we utilize the concept of a Polyhedral Cone Obstacle
Representation (PCOR) which transforms the problem, in O(m) time, into that of a point
moving amongst a collection, O(m), of convex prism-shaped obstacles (in E? and E3).

In three dimensions, The 8D Window Corner 3D (WC) algorithm constructs a Window
Edge (WE)- Treein time O(m®). We search for feasible paths in a hierarchical manner. The
algorithm determines the feasibility of incremental motion by using contact information
only. Next, the feasibility of straight-line, and mautiple-step, assembly paths are evaluated.
The low time complexity as a result of a finite search space, makes the Feasible Path problem
widely applicable, since many robotic applications would prefer fast computation of feasible
paths, over exponential time for (continuous search space) shortest path algorithms. This
trade-off is attractive for real-time operations such as telerobotic maintenance and repair,
and for path planning during assembly sequence planning.

Since the B-rep. of the C-space obstcales is not constructed, both algorithms are effi-
cient compared to path planners which first construct the (C)-space, an operation requiring
time (and worst-case number of vertices) O(m?) and O(m?) in planar and polyhedral ver-
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sions, respectively. Collectively, the above aspects result in algorithms which search for
feasible paths based on visiting Window Corners only, and which can be implemented with
ease in a wide range of robotic and assembly sequence planning situations. In addition,
we showed how the PCOR can be used to efficiently compute the minimum distance be-
tween the boundaries of a pair of non-convex 3D polyhedra, without requiring a 3D convex
decomposition. Results obtained for planar and polyhedral assembly path problems were
presented.
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